Revision as of 13:27, 9 January 2010 by imported>Peter Schmitt
A geometric series is a series associated with an infinite geometric sequence,
i.e., the quotient q of two consecutive terms is the same for each pair.
A geometric series converges if and only if −1<q<1.
Its sum is
where a is the first term of series.
Power series
A geometric series consisting of n terms is,
![{\displaystyle a(1+x+x^{2}+\cdots +x^{n-1})\equiv a\sum _{k=1}^{n}x^{k-1},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1de3ed43b1013f640920c76912f2425bacbc4c61)
where a and x are real numbers.
It can be shown that
![{\displaystyle S_{n}\,{\stackrel {\mathrm {def} }{=}}\,a\sum _{k=1}^{n}x^{k-1}={\begin{cases}{\displaystyle a{\frac {1-x^{n}}{1-x}}}&{\hbox{for}}\quad x\neq 1\\an&{\hbox{for}}\quad x=1\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc3195ca37ae97ba1960ec5d46494e9a6e7c870)
The infinite geometric series
converges when |x| < 1, because in that case xk tends to zero for
and hence
![{\displaystyle \lim _{n\rightarrow \infty }S_{n}={\frac {a}{1-x}},\quad {\hbox{for}}\quad |x|<1.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/64ab034cfcd278d8cc6b11775b57e4d721bc4e75)
The geometric series diverges for |x| ≥ 1.