Revision as of 14:03, 30 November 2009 by imported>Karsten Meyer
The binomial coefficient is a part of combinatorics. The binomial coefficient represent the number of possible choices of k elements out of n labelled elements (with the order of the k elements being irrelevant): that is, the number of subsets of size k in a set of size n. The binomial coefficients are written as
; they are named for their role in the expansion of the binomial expression (x+y)n.
Definition
![{\displaystyle {n \choose k}={\frac {n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}{1\cdot 2\cdot 3\cdots k}}={\frac {n!}{k!\cdot (n-k)!}}\quad \mathrm {for} \ n\geq k\geq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0b2c9a1ca7bc9e8d2311b905921ea7b3cad2da09)
Example
![{\displaystyle {8 \choose 3}={\frac {8\cdot 7\cdot 6}{1\cdot 2\cdot 3}}=56}](https://wikimedia.org/api/rest_v1/media/math/render/svg/42b7e548fdad2a81fe3bc66010f5174db1fcb49e)
Formulae involving binomial coefficients
Specifying a subset of size k is equivalent to specifying its complement, a subset of size n-k and vice versa. Hence
![{\displaystyle {n \choose k}={n \choose n-k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dd83be7bb1e592faf5807684c20030276a2644cb)
There is just one way to choose n elements out of n ("all of them") and correspondingly just one way to choose zero element ("none of them").
![{\displaystyle {n \choose n}={n \choose 0}=1\quad \mathrm {for} \ n\geq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b496bd752ec556ec981efd45f421bca4a3084ad)
The number of singletons (single-element sets) is n.
![{\displaystyle {n \choose 1}=n\quad \mathrm {for} \ n\geq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/79d8d7fceb6680950a010307453bb3e5c9564cc7)
The subset of size k out of n things may be split into those which do not contain the element n, which correspond to subset of n-1 of size k, and those which do contain the element n. The latter are uniquely specified by the remaining k-1 element which are drawn from the other n-1.
![{\displaystyle {n \choose k}={n-1 \choose k}+{n-1 \choose k-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/771ae699706c84ac767df08db61d05b72e7ef173)
There are no subsets of negative size or of size greater than n.
![{\displaystyle {n \choose k}=0\quad \mathrm {if} \ k>n\ \mathrm {or} \ k\ <0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f79df86ed24aa6381bcf077f1bcb61b465a9c87)
Examples
= ![{\displaystyle {n \choose k}={\frac {0}{1\cdot 2\cdot 3\cdots k}}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dccbb269b40b0b896326c35490d5540bf37cfbc5)
![{\displaystyle k\ <0\ \mathrm {:} \ {n \choose n-k}={n \choose k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d93b601245f44d6f916d6704f87d2a98265aaf1a)
![{\displaystyle n-k>n\Rightarrow {n \choose n-k}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/48b3db4ce72256fce77ccda6b081099eb4bbb4aa)
Usage
The binomial coefficient can be used to describe the mathematics of lottery games. For example the German Lotto has a system, where you can choose 6 numbers from the numbers 1 to 49. The binomial coefficient
is 13,983,816, so the probability to choose the correct six numbers is
.
Binomial coefficients and prime numbers
If p is a prime number then p divides
for every
. The converse is also true.