Fluid flow past a cylinder: Difference between revisions
imported>Brian Fiedler No edit summary |
imported>Brian Fiedler No edit summary |
||
Line 35: | Line 35: | ||
On the surface of the cylinder, or <math>r=R</math>, pressure varies from a maximum of 1 (red color) at the stagnation points at <math>\theta=0</math> and | On the surface of the cylinder, or <math>r=R</math>, pressure varies from a maximum of 1 (red color) at the stagnation points at <math>\theta=0</math> and | ||
<math>\theta=\pi</math> to a minimum of -3 (purple) in the limb of the cylinder at <math>\theta=\frac{1}{2}\pi</math> and <math>\theta=\frac{3}{2}\pi</math>. Likewise, <math>V</math> varies from V=0 at the stagnation points to <math>V=2U</math> on the sides, in the low pressure. | <math>\theta=\pi</math> to a minimum of -3 (purple) in the limb of the cylinder at <math>\theta=\frac{1}{2}\pi</math> and <math>\theta=\frac{3}{2}\pi</math>. Likewise, <math>V</math> varies from V=0 at the stagnation points to <math>V=2U</math> on the sides, in the low pressure. | ||
==References== | |||
<references /> |
Revision as of 20:31, 29 May 2009
"The flow of an incompressible fluid past a cylinder is one of the first mathematical models that a student of fluid dynamics encounters. This flow is an excellent vehicle for the study of concepts that will be encountered numerous times in mathematical physics, such as vector fields, coordinate transformations, and most important, the physical interpretation of mathematical results." [1]
Mathematical Solution
A cylinder (or disk) of radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} is placed in two-dimensional, incompressible, inviscid flow. The goal is to find the steady velocity vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{V}} and pressure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} in a plane, subject to the condition that far from the cylinder the velocity vector is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{V}=U\widehat{i}+0\widehat{j}}
and at the boundary of the cylinder
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{V}\cdot\widehat{n}=0}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{n}} is vector normal to the cylinder surface. The upstream flow is uniform and has no vorticity. The flow is inviscid, incompressible and has constant mass density Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} . The flow therefore remains without vorticity, or is said to be irrotational, with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \times \vec{V}=0} everywhere. Being irrotational, there must exist a velocity potential :
Being incompressible, , so must satisify Laplace's equation:
The solution for is obtained most easily in polar coordinates <matth>r</math> and , related to conventional Cartesian coordinates by and . In polar coordinates, Laplace's equation is:
The solution that satisfies the boundary conditions is
The velocity components in polar coordinates are obtained from the components of in polar coordinates:
and
Being invisicid and irrotational, Bernoulli's equation allows the solution for pressure field to be obtained directly form the velocity field:
where the constants and appear to that far from the cylinder, where . Using ,
In the figures, the colorized field referred to as "pressure" is a plot of
On the surface of the cylinder, or , pressure varies from a maximum of 1 (red color) at the stagnation points at and to a minimum of -3 (purple) in the limb of the cylinder at and . Likewise, varies from V=0 at the stagnation points to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=2U} on the sides, in the low pressure.