Affine scheme: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Giovanni Antonio DiMatteo
imported>Joe Quick
m (subpages)
Line 1: Line 1:
{{subpages}}
==Definition==
==Definition==


Line 24: Line 25:


==Curves==
==Curves==
[[Category:CZ Live]]
[[Category:Mathematics Workgroup]]
[[Category:Stub Articles]]

Revision as of 04:43, 26 December 2007

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Definition

For a commutative ring , the set (called the prime spectrum of ) denotes the set of prime ideals of $A$. This set is endowed with a topology of closed sets, where closed subsets are defined to be of the form

for any subset . This topology of closed sets is called the Zariski topology on . It is easy to check that , where is the ideal of generated by .

The functor V and the Zariski topology

The Zariski topology on satisfies some properties: it is quasi-compact and , but is rarely Hausdorff. is not, in general, a Noetherian topological space (in fact, it is a Noetherian topological space if and only if is a noetherian ring.

The Structural Sheaf

has a natural sheaf of rings, denoted by and called the structural sheaf of X. The pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (Spec(A),O_X)} is called an affine scheme. The important properties of this sheaf are that

  1. The stalk is isomorphic to the local ring , where is the prime ideal corresponding to .
  2. For all , , where is the localization of by the multiplicative set . In particular, .

Explicitly, the structural sheaf may be constructed as follows. To each open set , associate the set of functions

; that is, is locally constant if for every , there is an open neighborhood contained in and elements such that for all , (in particular, is required to not be an element of any ). This description is phrased in a common way of thinking of sheaves, and in fact captures their local nature. One construction of the sheafification functor makes use of such a perspective.

The Category of Affine Schemes

Regarding as a contravariant functor between the category of commutative rings and the category of affine schemes, one can show that it is in fact an anti-equivalence of categories.

Curves