Green's Theorem: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
(appended 3D case)
mNo edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
Green's Theorem is a vector identity that is equivalent to the [[curl theorem]] in two dimensions. It relates the line integral around a simple closed curve <math>\partial\Omega</math> with the double integral over the plane region <math>\Omega\,</math>.
'''Green's Theorem''' is a vector identity that is equivalent to the [[curl theorem]] in two dimensions. It relates the line integral around a simple closed curve <math>\partial\Omega</math> with the double integral over the plane region <math>\Omega\,</math>.


The theorem is named after the British mathematician [[George Green]]. It can be applied to various fields in physics, among others flow integrals.
The theorem is named after the British mathematician [[George Green]]. It can be applied to various fields in physics, among others flow integrals.


== Mathematical Statement ==
== Mathematical Statement in two dimensions==
Let <math>\Omega\,</math> be a region in <math>\R^2</math> with a positively oriented, piecewise smooth, simple closed boundary <math>\partial\Omega</math>. <math>f(x,y)</math> and <math>g(x,y)</math> are functions defined on a open region containing <math>\Omega\,</math> and have continuous [[partial derivative|partial derivatives]] in that region. Then Green's Theorem states that
Let <math>\Omega\,</math> be a region in <math>\R^2</math> with a positively oriented, piecewise smooth, simple closed boundary <math>\partial\Omega</math>. <math>f(x,y)</math> and <math>g(x,y)</math> are functions defined on a open region containing <math>\Omega\,</math> and have continuous [[partial derivative|partial derivatives]] in that region. Then Green's Theorem states that
: <math>
: <math>
Line 15: Line 15:
</math>
</math>


== Applications ==
=== Application:  Area Calculation ===
=== Area Calculation ===
Green's theorem is very useful when it comes to calculating the area of a region. If we take <math>f(x,y)=y</math> and <math>g(x,y)=x</math>, the area of the region <math>\Omega\,</math>, with boundary <math>\partial\Omega</math> can be calculated by
Green's theorem is very useful when it comes to calculating the area of a region. If we take <math>f(x,y)=y</math> and <math>g(x,y)=x</math>, the area of the region <math>\Omega\,</math>, with boundary <math>\partial\Omega</math> can be calculated by
: <math>
: <math>
Line 23: Line 22:
This formula gives a relationship between the area of a region and the line integral around its boundary.
This formula gives a relationship between the area of a region and the line integral around its boundary.


If the curve is parametrisized as <math>\left(x(t),y(t)\right)</math>, the area formula becomes
If the curve is parametrized as <math>\left(x(t),y(t)\right)</math>, the area formula becomes
: <math>
: <math>
A=\frac{1}{2}\oint\limits_{\partial \Omega}(xy'-x'y)dt
A=\frac{1}{2}\oint\limits_{\partial \Omega}(xy'-x'y)dt
</math>
</math>


==Green's theorem in three dimensions==
==Statement in three dimensions==
Different ways of formulating Green's theorem in three dimensions may be found. One of the more useful formulations is
Different ways of formulating Green's theorem in three dimensions may be found. One of the more useful formulations is
: <math>
: <math>
Line 59: Line 58:
\iiint\limits_V  \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi\, d V =
\iiint\limits_V  \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi\, d V =
\iint\limits_{\partial V}\phi \boldsymbol{\nabla}\psi \cdot d\mathbf{S} - \iint\limits_{\partial V}\psi \boldsymbol{\nabla}\phi  \cdot d\mathbf{S} .
\iint\limits_{\partial V}\phi \boldsymbol{\nabla}\psi \cdot d\mathbf{S} - \iint\limits_{\partial V}\psi \boldsymbol{\nabla}\phi  \cdot d\mathbf{S} .
</math>
</math>[[Category:Suggestion Bot Tag]]

Latest revision as of 16:01, 23 August 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Green's Theorem is a vector identity that is equivalent to the curl theorem in two dimensions. It relates the line integral around a simple closed curve with the double integral over the plane region .

The theorem is named after the British mathematician George Green. It can be applied to various fields in physics, among others flow integrals.

Mathematical Statement in two dimensions

Let be a region in with a positively oriented, piecewise smooth, simple closed boundary . and are functions defined on a open region containing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega\,} and have continuous partial derivatives in that region. Then Green's Theorem states that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \oint\limits_{\partial\Omega}(fdx+gdy)=\iint\limits_\Omega \left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right)dxdy }

The theorem is equivalent to the curl theorem in the plane and can be written in a more compact form as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \oint\limits_{\partial \Omega}\mathbf{F}\cdot d\mathbf{S}=\iint\limits_\Omega (\nabla\times\mathbf{F})d\mathbf{A} }

Application: Area Calculation

Green's theorem is very useful when it comes to calculating the area of a region. If we take Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=y} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x,y)=x} , the area of the region Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega\,} , with boundary Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial\Omega} can be calculated by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=\frac{1}{2}\oint\limits_{\partial \Omega} xdy-ydx }

This formula gives a relationship between the area of a region and the line integral around its boundary.

If the curve is parametrized as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(x(t),y(t)\right)} , the area formula becomes

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=\frac{1}{2}\oint\limits_{\partial \Omega}(xy'-x'y)dt }

Statement in three dimensions

Different ways of formulating Green's theorem in three dimensions may be found. One of the more useful formulations is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iiint\limits_V \Big( \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi\Big)\, d V = \iint\limits_{\partial V} \big(\phi \boldsymbol{\nabla}\psi\big) \cdot d\mathbf{S} - \iint\limits_{\partial V} \big(\psi \boldsymbol{\nabla}\phi\big) \cdot d\mathbf{S}. }

Proof

The divergence theorem reads

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iiint\limits_V \nabla \cdot \mathbf{F} \, d V = \iint\limits_{\partial V}\mathbf{F} \cdot d\mathbf{S} }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\mathbf{S}} is defined by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\mathbf{S}=\mathbf{n} \, dS} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{n}} is the outward-pointing unit normal vector field.

Insert

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{F} = \phi \boldsymbol{\nabla}\psi - \psi \boldsymbol{\nabla}\phi }

and use

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \boldsymbol{\nabla}\cdot \mathbf{F} &= \big(\boldsymbol{\nabla}\phi\big)\cdot \big(\boldsymbol{\nabla}\psi\big) -\big(\boldsymbol{\nabla}\psi\big)\cdot \big( \boldsymbol{\nabla}\phi\big) + \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi \\ &= \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi \end{align} }

so that we obtain the result to be proved,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iiint\limits_V \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi\, d V = \iint\limits_{\partial V}\phi \boldsymbol{\nabla}\psi \cdot d\mathbf{S} - \iint\limits_{\partial V}\psi \boldsymbol{\nabla}\phi \cdot d\mathbf{S} . }