Topological space: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
(Inserted some topological notions)
imported>Jitse Niesen
(→‎Some topological notions: A is a subset in X, not the other way around)
Line 33: Line 33:
; Partial list of topological notions  
; Partial list of topological notions  
; Neighbourhood : A subset ''N'' of ''X'' is a neighbourhood of a point <math>x \in X</math> if ''N'' contains an open set <math>U \in O</math> containing the point ''x''   
; Neighbourhood : A subset ''N'' of ''X'' is a neighbourhood of a point <math>x \in X</math> if ''N'' contains an open set <math>U \in O</math> containing the point ''x''   
; Limit point : A point <math>x \in X</math> is a limit point of a subset ''X'' of ''A'' if any open set in ''O'' containing ''x'' also contains a point <math>y \in A</math> with <math>y \notin x</math>. An equivalent definition is that <math>x \in X</math> is a limit point of ''A'' if every neighbourhood of ''x'' contains a point <math>y \in A</math> different from ''x''.
; Limit point : A point <math>x \in X</math> is a limit point of a subset ''A'' of ''X'' if any open set in ''O'' containing ''x'' also contains a point <math>y \in A</math> with <math>y \ne x</math>. An equivalent definition is that <math>x \in X</math> is a limit point of ''A'' if every neighbourhood of ''x'' contains a point <math>y \in A</math> different from ''x''.
; Open cover : A collection <math>\mathcal{U}</math> of open sets of ''X'' is said to be an open cover for ''X'' if each point <math>x \in X</math> belongs to at least one of the opens sets in <math>\mathcal{U}</math>  
; Open cover : A collection <math>\mathcal{U}</math> of open sets of ''X'' is said to be an open cover for ''X'' if each point <math>x \in X</math> belongs to at least one of the opens sets in <math>\mathcal{U}</math>  
; Path: A path <math>\gamma</math> is a [[continuous function]] <math>\gamma:[0,1]\rightarrow X</math>. The point <math>\gamma(0)</math> is said to be the '''starting point''' of <math>\gamma</math> and <math>\gamma(1)</math> is said to be the '''end point'''. A path joins its starting point to its end point  
; Path: A path <math>\gamma</math> is a [[continuous function]] <math>\gamma:[0,1]\rightarrow X</math>. The point <math>\gamma(0)</math> is said to be the '''starting point''' of <math>\gamma</math> and <math>\gamma(1)</math> is said to be the '''end point'''. A path joins its starting point to its end point
 


== See also ==
== See also ==

Revision as of 05:48, 15 September 2007

In mathematics, a topological space is an ordered pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,O)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is a set and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is a certain collection of subsets of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} called the open sets or the topology of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} . The topology of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} introduces a structure on the set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} which is useful for defining some important abstract notions such as the "closeness" of two elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} and convergence of sequences of elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} .

Formal definition

A topological space is an ordered pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,O)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is a set and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is a collection of subsets of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in O \Rightarrow A \subset X} ) with the following three properties:

1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \emptyset} (the empty set) are in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O}

2. The union of any number (countable or uncountable) of elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is again in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O}

3. The intersection of any finite number of elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is again in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O}

Elements of the set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} are called open sets (of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} ).

Note that as shorthand a topological space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,O)} is often simply written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} once the particular topology on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is understood.

Examples

1. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=\mathbb{R}} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} denotes the set of real numbers. The open interval ]a, b[ (where a < b) is the set of all numbers between a and b:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathopen{]} a,b \mathclose{[} = \{ y \in \mathbb{R} \mid a < y < b \}.}

Then a topology Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} can be defined on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=\mathbb{R}} to consist of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \emptyset} and all sets of the form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigcup_{\gamma \in \Gamma} \mathopen{]} a_\gamma, b_\gamma \mathclose{[} ,}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma} is any arbitrary index set, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{\gamma}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_{\gamma}} are real numbers satisfying Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_\gamma < b_\gamma} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma \in \Gamma } . This topology is precisely the familiar topology induced on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} by the Euclidean distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(x,y)=|x-y|} and probably the most widely used in the applied sciences. However, in general one may define different inequivalent topologies on a particular set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} and in the next example another topology on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} , albeit a relatively obscure one, will be constructed.

2. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=\mathbb{R}} as before. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} be a collection of subsets of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} defined by the requirement that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in O } if and only if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=\emptyset} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} contains all except at most a finite number of real numbers. Then it is straightforward to verify that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} defined in this way has the three properties required to be a topology on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} . This topology is known as the Zariski topology.

Some topological notions

This section introduces some important topological notions. Throughout, X will denote a topological space with the topology O.

Partial list of topological notions
Neighbourhood
A subset N of X is a neighbourhood of a point if N contains an open set containing the point x
Limit point
A point is a limit point of a subset A of X if any open set in O containing x also contains a point with . An equivalent definition is that is a limit point of A if every neighbourhood of x contains a point different from x.
Open cover
A collection of open sets of X is said to be an open cover for X if each point belongs to at least one of the opens sets in
Path
A path is a continuous function . The point is said to be the starting point of and is said to be the end point. A path joins its starting point to its end point

See also

Topology

Analysis

Metric space

References

1. K. Yosida, Functional Analysis (6 ed.), ser. Classics in Mathematics, Berlin, Heidelberg, New York: Springer-Verlag, 1980

2. D. Wilkins, Lecture notes for Course 212 - Topology, Trinity College Dublin, URL: [1]