imported>Paul Wormer |
imported>Paul Wormer |
Line 110: |
Line 110: |
| ==Reference== | | ==Reference== |
| <references /> | | <references /> |
| | ==External link== |
| | Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/LegendrePolynomial.html] |
Revision as of 09:10, 22 August 2007
In mathematics and physics, an associated Legendre function Pl(m) is related to a Legendre polynomial Pl by the following equation
For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1-x ² )½ and hence is not a polynomial.
The associated Legendre polynomials are important in quantum mechanics and potential theory.
Differential equation
Define
where Pl(x) is a Legendre polynomial.
Differentiating the Legendre differential equation:
m times gives an equation for Π(m)l
After substitution of
we find, after multiplying through with , that the associated Legendre differential equation holds for the associated Legendre functions
In physical applications usually x = cosθ, then then associated Legendre differential equation takes the form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sin \theta}\frac{d}{d\theta} \sin\theta \frac{d}{d\theta}P^{(m)}_\ell +\left[ \ell(\ell+1) - \frac{m^2}{\sin^2\theta}\right] P^{(m)}_\ell = 0. }
Extension to negative m
By the Rodrigues formula, one obtains
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\ell^{(m)}(x) = \frac{1}{2^\ell \ell!} (1-x^2)^{m/2}\ \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^\ell.}
This equation allows extension of the range of m to: -l ≤ m ≤ l.
Since the associated Legendre equation is invariant under the substitution m → -m, the equations for Pl( ±m), resulting from this expression, are proportional.
To obtain the proportionality constant we consider
and we bring the factor (1-x²)-m/2 to the other side.
Equate the coefficient of the highest power of x on the left and right hand side of
and it follows that the proportionality constant is
so that the associated Legendre functions of same |m| are related to each other by
Note that the phase factor (-1)m arising in this expression is not due to some arbitrary phase convention, but arises from expansion of (1-x²)m.
Orthogonality relations
Important integral relations are
Recurrence relations
The functions satisfy the following difference equations, which are taken from Edmonds[1]
-
Reference
- ↑ A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, 2nd edition (1960)
External link
Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource. [1]